Probabilistic Index Maps for Modeling Natural Signals
نویسندگان
چکیده
One of the major problems in modeling natural signals is that signals with very similar structure may locally have completely different measurements, e.g., images taken under different illumination conditions, or the speech signal captured in different environments. While there have been many successful attempts to address these problems in application-specific settings, we believe that underlying a large set of problems in signal representation is a representational deficiency of intensity-derived local measurements that are the basis of most efficient models. We argue that interesting structure in signals is better captured when the signal is defined as a matrix whose entries are discrete indices to a separate palette of possible measurements. In order to model the variability in signal structure, we define a signal class not by a single index map, but by a probability distribution over the index maps, which can be estimated from the data, and which we call probabilistic index maps. The existing algorithms can be adapted to work with this representation. Furthermore, the probabilistic index map representation leads to algorithms with computational costs proportional to either the size of the palette or the log of the size of the palette, making the cost of significantly increased invariance to non-structural changes quite bearable. We illustrate the benefits of the probabilistic index map representation in several applications in computer vision and speech processing.
منابع مشابه
Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملارزیابی کارایی مدل احتمالاتی وزن واقعه در تهیه نقشه حساسیت زمین لغزش
Mass movements are usually natural erosion, but the human can aggravate it by operations such as mining, road construction and destroying the natural vegetation. The purpose of this study is to identify the factors influencing the occurrence of landslides by using a probabilistic model Weight of Evidence and Geography Information System in the Siyahbisheh Watershed. 132 landslide points are ide...
متن کاملProbabilistic Landslide Risk Analysis and Mapping (Case Study: Chehel-Chai Watershed, Golestan Province, Iran)
The efficiency of three statistical models, AHP surface-weighted density bivariate (semi-quantitative models), stepwise multivariate regression and logistic multivariate regression models were compared in Chehel-Chai watershed in Golestan province, Iran. In current study the hazard map was prepared according to the top model of landslide hazard map. Chehel-Chai watershed is located as one of Go...
متن کاملCalculations of Linac Photon Dose Distributions in Homogeneous Phantom Using Spline
Introduction Relative dose computation is a necessary step in radiation treatment planning. Therefore, finding an approach that is both fast and accurate seems to be necessary. The purpose of this work was to investigate the feasibility of natural cubic spline to reconstruct dose maps for linear accelerator radiation treatment fields in comparison with those of the simulation. Materials and Met...
متن کاملHabitat potential modeling of Thymus kotschyanus Boiss. & Hohen. in the northern of Ardabil Province rangelands
This study aims at comparing the performance of MaxEnt and logistic regression in preparing the predictive habitat distribution map of Thymus kotschyanus and determining the factors affecting in the northern of Ardabil Province rangelands. 28 sites were selected and at each site, three transects with a length of 100 m and on each transect ten 1m2 plots were established. Soil samples were taken ...
متن کامل